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Low-Energy Neutron-Neutron Scattering Parameters* 
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A precise evaluation of the spectrum in the reaction x~-\-D —> 2n-\-y, including final-state interactions 
is presented with a view of determining the neutron-neutron scattering length. Approximations of previous 
calculations are examined and avoided where their effect is found to be significant. Sufficiently accurate 
experiments should be capable of distinguishing this parameter to an error of 1 F. 

I. INTRODUCTION 

THE determination of the low-energy neutron-
neutron scattering parameters is of interest for 

two reasons. First, it has been suggested that the differ
ence between these parameters for n—n,n—p, and p—p 
scattering may be due to a breakdown of charge inde
pendence of nuclear forces caused by the TT±— 7T° mass 
difference,1 and a future theory of the two-nucleon 
potential should account for these differences. Second, 
in any process where two neutrons appear in the final 
state these parameters are needed to evaluate final- or 
initial-state interactions. 

In this article we shall elaborate on a method for 
determining these parameters, specifically the n—n 
scattering length and effective range, discussed by 
McVoy.2 The method involves the study of the energy 
and angle distribution in the process: 

w~+D—>n+n+y, (1) 

where the T~ is captured from an S state of the deuteron. 
The shape of the energy-angle spectrum of the two final 
neutrons shows a marked sensitivity^to the assumed 
scattering length. 

The reason for re-examining the calculation of Ref. 2 
is to check the effect of certain approximations made 
therein. This has relevance as current experimental 
techniques permit the determination of the scattering 
length to an accuracy of ^ 1 F.3 

The difference between this work and that of Ref. 2 
may be summarized by the following points: 

(1) The validity of the impulse approximation for 
process (1) is checked by evaluating the next-order 
corrections as given by Chew and Goldberger.4 

(2) Instead of using a Hulthen S-state and an asymp
totic Z)-state wave function for the deuteron, a wave 
function obtained by a numerical solution of the deu
teron problem was used.5 

* Work supported by the U. S. Atomic Energy Commission. 
1 D. Y. Wong and H. P. Noyes, Phys. Rev. 126, 1866 (1962). 
2 K. W. McVoy, Phys. Rev. 121, 1401 (1961). 
3 R. P. Haddock to H. P. Noyes (private communication). 
* G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952). 
6 N . K. Glendenning and G. Kramer, Phys. Rev. 126, 2159 

(1962). The wave function used in this work is the solution of 
potential No. 8 of this reference. Thanks are due Dr. Glendenning 
for having kindly provided us with the numerical values of the 
wave function. 

(3) The final-state interaction between the two 
neutrons was put in via the Jacob-Omnes-Mahoux 
method,6 where no recourse had to be made to a zero-
range approximation. Likewise no model was needed for 
the scattering-state wave function of the two neutrons. 

(4) A check on the magnitude of the enhancement 
due to P-wave neutron-neutron scattering was made. 

The other approximations used in Ref. 2 were shown 
to give negligible corrections and were not further 
examined. 

Sections II, III, and the Appendix are devoted to the 
mathematical formulation of the problem, and the 
results are presented and discussed in Sec. IV. 

A word should be added about a more general question 
of the validity of the impulse approximation for this 
problem. In our approximation we have considered 
multiple scatterings of the pion from either proton or 
neutron, as well as proton-neutron scattering inside the 
deuteron. However, we have not taken into account 
interactions of the pion or photon with virtual pion 
currents inside the deuteron. The only motivation we 
give for the neglect of these terms is our ignorance of 
reliable methods of calculating them. As shall be shown, 
the effect of the first-order corrections to the impulse 
approximation turn out to have negligible effect on the 
shape of the spectra studied; it may be hoped that like
wise these incalculable terms will not contribute size-
ably. It should be kept in mind that although some of 
these corrections, both the ones discussed above and 
those not calculated, may make small differences in the 
total rates, as we are interested only in spectral 
shapes, and normalize all our curves to have a definite 
value at certain points, many of these corrections 
become totally insignificant. This point shall be dis
cussed again in Sec. IV. 

II. THE IMPULSE APPROXIMATION AND 
FIRST-ORDER CORRECTIONS 

For convenience we shall write down the formulas of 
Ref. 4 for the impulse approximation. If we consider a 
scatterer composed of N particles, interacting through a 
potential U, and an incident particle which interacts 
with the &th particle of the scatterer by a potential Vk, 

6 M. Jacob, G. Mahoux, and R. Omnes^ Nuovo Cimento 23, 838 
(1962). 
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the total Hamiltonian has the form: 

H=H0+V, 

with 

H0=K+U, 

where k is the total kinetic energy and 

N 

v=z vk. 

(2a) 

(2b) 

(3) 

Let WA(±) be a two-particle wave operator involving 
the incident and kth. particle of the scatterer, co* satisfies 
the equation: 

«<<+> = 1 + (E-K- Vk+ir,)-Wk, 

6>k<->=l+Vk(E-K- Vk-iv)~
l. 

We may define the two-particle scattering operator 

(4) 

(5) 

With the aid of the tk's and co '̂s we may express the 
total scattering operator as 

r<+)=L /*<+>+z (co^->-i)[tW+>] 

+ E /*<->(»»<+>-i). (6) 
k^k' 

The first term of (6) represents the usual impulse 
approximation; the second term gives the correction due 
to the diminution of the incident wave as it crosses the 
scatterer and of the influence of the binding potential U 
on the individual two-body scatterings. The last term 
represents the multiple scattering corrections. 

Before proceeding with the examination of each of the 
terms of (6) for process (1) let us establish the notation 
used. Units are such that fo=c=l. The deuteron wave 
function in momentum space is written as: 

<PU 

([- w(g)/3<ri-q<F2*q \ - | 

<.,(,)=jL„(g)+_(___„,.^jJ 
(7) 

where Xx
m is the product of two Pauli spinors in a total 

spin-one state, with magnetic quantum number m. U(q) 
and w(q) are the Bessel transforms of the S and D 

FIG. 1. First-order 
impulse approxima- —g-
t ion. "ft? ^L 

FIG. 2. Multiple scat
tering correction. 

position space wave functions. 

^(?) = — u(q)Jo(qr)rdr, 
V2TT J 

w(q) = — w(r)j2(qr)rdr, 
V2W 

(8) 

with the normalization 

/ 
(ui(r)+wi(r))dr=l. (9) 

The above wave function is used in the first-order 
evaluation with u(r) and w(r) taken from Ref. 5. As the 
corrections are expected to be small compared to the 
first-order terms, a simpler wave function was used to 
evaluate them, namely, the Hulthen7 function for the 
5-state, and the Z>-state contribution was neglected. The 
Hulthen function in position space is 

u(r)= (2ap(a+P)yi2(e-<*r-e-tr)(p-a)-\ (10) 
with 

01=0.3274^ and jff=1.54wT. 

The two-body scattering amplitudes used were for the 
processes: 

ir~+p—>w+7, (Ha) 

TV++N->T++N. ( l i b ) 

As in Ref. 2 the amplitude for (11a) for a relative 
proton-pion momentum q going to a neutron of momen
tum q/ is taken as the low-energy limit of the amplitude 
due to Chew, Goldberger, Low, and Nambu,8 

^ T V O l t j Q / ) ^ ' ^ e)*7- (12) 

(In the corrections we have neglected processes going 
via 7r°+n—^n+y which go to zero for zero-incident 
momentum and are negligible at the energies due to the 
motion of the particles inside the deuteron.) 

For ( l ib) we take the effective range approximation 
for IT—N scattering.9 The scattering matrix for a rela-

7 L. Hulth&i and M. Sugawara, in Handbuch der Physik, edited 
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 5. 

8 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 
Phys. Rev. 106, 1345 (1957). 

9 See, for example, J. Hamilton, The Theory of Elementary Parti
cles (Oxford University Press, New York, 1959). 
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FIG. 3. Impulse assumption 
corrections. 

tive nucleon-pion relative momentum q 
nucleon momentum q/ is 

mN+m^ aa 

Tij (q,:,q/) = dij, 
mNmv 47r2 (13) 

<z3= — 0.11/WTT , #1 = 0 . 1 7 / ^ . 

The kinematics of the problem are such that we have 
two independent variables. We shall use either Q, rela
tive n—n momentum, and 6Q, the angle between Q and 
the photon direction, or p, the momentum of one of the 
neutrons and \p, its angle with the photon direction. We 
shall also use EQ=Q2/2mNj E=p2/2mN, and co, the 
photon energy. 

In the subsequent discussion it will be useful to make 
recourse to a diagramatic presentation of the terms of 
Eq. (6). In these diagrams a solid line indicates either 
an external nucleon on nucleon-energy denominator; a 
dashed line indicates an external pion or pion-energy 
denominator; a wiggly line indicates the final photon. 
A solid circle denotes a relevant two-body scattering 
operator, and an open circle the n—p binding potential 
U. We shall evaluate the transition element for process 
(1) for a zero relative it—D momentum, with an initial 
deuteron with magnetic quantum number m, to two 
neutrons of momenta ni, n2, with spin indices a, 0, 

and final- respectively, and photon of momentum y and polariza
tion index fx. 

A. First-Order Impulse Approximation 

This term is represented in Fig. 1, and may be 
written as 

^ ^ ( - n 2 ) r ^ ( - n 2 ; n 1 ) . (14) 

(The Pauli principle for the two neutrons shall be taken 
into account later by projecting out even angular 
momentum waves for singlet states, and odd waves for 
the triplet case.) 

B. Multiple Scattering Term 

Neglecting 7r°+n—»7r°+y the only contribution 
comes from Fig. 2 and is 

/ • 
^ • ; ( m ) ( - q ) 

r < a M*(~q;m)r i / g (q ;n 8 ) 

(n22—q2)/2mN—(q—n2)
2/2m1r+i€ 

(15) 

C. Impulse Assumption Errors 

These contributions come from the second term in 
(6), and due to the commutators each contribution gives 
rise to two diagrams. We take the difference of Figs. 3(a) 
and 3(b) and of 3(c) and 3(d). From Fig. 3(a) we have 

fdqdll *>,/-> (-q) 
T m < / * ( - l - n 2 ; n i ) < - l - n 2 , m; n2, p\ U\ -q-l,n; q, j)~ 

Wi2/2wiv+co+(l+n2)2/2wAr—•P/2mv—mv~~ u 

X 
Z \ n ( - q ; - q - 1 ) 

L {q+\Y/2mN+l2/2mr-q
2/2mN+ir] J J (16) 
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From 3(b) we have 

/ < M ^ / m ) ( - q ) < - n 2 , n;n2,t3\ U|q, i\ - q , i ) 

r m « ^ ( - l - n 2 ; n i ) r n w ( - i i 2 , — 1—n2) 

/ 

X , 

[^(l+n2)
2/2m^+l2/2mir—n2/2m^—if\\jii2/2mN

Jru— ( l+n 2 ) 2 / 2mj \ r—/ 2 / 2WTT+^—^J ' 

Figure 3(c) contributes 

r ^ ^ C - l - n a j i i O dq<fl*>tf<m>(-q) 

and from 3 (d) 

ni2/2mN+o)—P/2mir—(l-\-t\2)2/2mN—mlr—ie 

X(—l—n2j m\ n2, f3\ U\ - q , i ; q - l , n) 
3Tyn(q,q-D 

(q—l)2/2wi\r+/2/2wr—q2/2mN-\-ir) J 

r ^ ^ C - l - n a j n O r n ^ l + n a j i i a ) 

(17) 

(18) 

I [^x 2 /2w^+co- ( l + n 2 ) 2 / 2 w i V + ^ / 2 w 7 r - w , - ^ ] [ # 2
2 / 2 w A r ~ (I+n 2) 2 /2w i V+/ 2 /2w 7 r+ie] 

X ( - l - n 2 , m ; l + n 2 , » | U\ ~qii]qij)\ , (19) 

where (qi,«i; q2,a21Z71 q3,a3; qn,an) denotes the matrix 
element of the potential between nucleons on momenta 
qi, q2- • • and spin indices ah a2, • • •, respectively. 

We shall make one further approximation. In the 
evaluation of the correction terms, which are small com
pared to the first-order amplitude (as shall be verified by 
the subsequent calculation), we shall neglect terms of 
order m^/wix. This simplification permits an evaluation 
of these corrections without a recourse to an explicit 
model for the potential. Then, as shall be shown in the 
Appendix, Eqs. (16) and (17) cancel and (18) minus 
(19) are of order mT/mN and may consistently be 
dropped. The only correction left is (15). 

Using the above expressions and some of the evalua
tions presented in the Appendix the transition amplitude 
may be written as 

<< «i/3| o-i-cl u(n2)— 
w{n2) 3<Ti*n2or2«n2 

— <Ti«<r2 J 

-az(a$\<ri't\Xi 

V& n2
2 

(2ap(a+l3)yi2 1 

xr) 

(/3-a) n2 

n2 

:]• X arc tan arc tan— | . (20) 

Expression (20) is further decomposed into its partial 
waves (even for triplet n—n, odd for singlet) and into 
the two-photon polarization directions. Suppressing 
spinor and polarization indices 

r(G1cos^)=E(2/+i)r«(0;«)p,(cos^), (21) 
1 

where we have put in the redundant variable co in the 
expression for the partial-wave amplitudes for future 
convenience. The summation ranges over odd or even /. 

III. FINAL-STATE INTERACTIONS 

The enhancement of process (1) due to the strong 
low-energy scattering of the two neutrons in the final 
state will be inserted into the matrix element by a 
method discussed in Ref. 6. If 8i(Q) is the scattering 
phase shift for two neutrons of relative momentum Q, 
the enhanced amplitude becomes 

r,,«uh(e;<o) = r , (e ;co)- exP[g,(e)+«,(e)] 

X dQ* — , (22) 
Ql~Q 

where 

i(Q) 
I r 6i( 

= -P dQl~- (23) 

In (22) the Ti(Ql;a>) are evaluated keeping co fixed. 
As in the process considered the pion is captured at rest, 
thus co and Q are related; keeping co and varying Q 
corresponds to evaluating the matrix element for inci
dent pions of finite momenta, or in the ir—D center-of-
mass system this corresponds to letting the initial 
energy vary. 

For 1=0, 1 it turns out that Ti(Q;oo) has a slow 
variation as a function of Q and we may take it out of 
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FIG. 4. Neutron-neutron relative energy spectrum. 

the integrand and approximate (22) by10 

(24) 

where we have dropped the photon-energy variable. 
The error caused by this assumption is less than 0.5% in 
the range of Q values considered. 

We now discuss the forms of 8i(Q) investigated. For 
the 5-state scattering we are interested in the scattering 
length and effective range parameters. The effective 
range expansion is 

gcot«0(G)=l/a+iGV. (25) 

A generalized form due to Noyes,11 derived from a dis
persion calculation taking into account the one-pion 
exchange cut, was also examined. 

Q cotd0(Q)= l/a+Q*r/2+cQ*/(l+dQ*). (26) 

As we shall not be interested in absolute rates but 
only in spectrum shapes normalized to a definite value 
at some point, the calculation using the phase shifts (25) 
and (26) differed absolutely insignificantly. Thus, for 
simplicity we employed (25) in most of the numerical 
work. From (25) we find 

exp(2go(e)) = ( e 2 + ) 

X(W ) . (27) 

Although we expect the S wave to dominate the 
scattering for small energies, in connection with point 4 
of the Introduction, the P-wave triplet enhancement 
was computed. The P-wave phase shifts were taken 
from a semiphenomenological fit to the p—p date, with 
the electromagnetic correction left out.12 

The ratio of P- to S-wave enhancement is ^0 .2% for 

10 J- Jackson, in Dispersion Relations, edited by G. R. Screaton 
(Oliver and Boyd, Ltd., Edinburgh, 1961). 

11 H. P. Noyes, Phys. Rev. 130, 2025 (1963). 
12 H. P. Noyes (private communication). 

small Q and grows to l % - 2 % for Q=S0 MeV/c. Thus 
in the subsequent calculations P-wave enhancements 
were not considered. 

The expression for the spectrum becomes 

dN=(\T0^(Q)\^+\T0^(Q)\2)e2goiQ)n, (28) 

where the superscripts indicate the two-photon polari
zations. ft is the phase space which is proportional to 
either 

-dEQd(cosdQ) (29) 

or 

(l+«/2mjr) 

coP 

(1+P/niN+P cos\f//mN) 
-dEd(cost). 

IV. DISCUSSION OF RESULTS 

Restricting ourselves to photon energies near the 
maximum we have seen that this process goes almost 
entirely to an 6* state of the two final neutrons. Thus 
dN/dEQd&Q is independent of dQ. The results for several 
values of the parameters are presented in Figs. 4 and 5. 
From Fig. 4 we see that the determination of the energy 
of the maximum value of the spectrum may serve to 
indicate the scattering length. However, from Fig. 5 we 
see that this determination is not unambiguous as 
increasing the effective range may bring the spectrum 
to coincide with one for a higher scattering length and 
smaller effective range. If we restrict ourselves to 
effective ranges less than 3.5 F this method would yield 
the scattering length to an accuracy of 1 F. To deter
mine both parameters one would have to go to larger Q 
values where effects would make this calculation 
unreliable. 

For comparison with Ref. 2, we have plotted the rates 
as a function of E and \p (Figs. 6 and 7). Using the 
results of Ref. 2 would give a scattering length 1-2 F 
smaller than those obtained using this calculation. Al
though the multiple scattering corrections discussed 
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FIG. 5. Neutron-neutron relative energy spectrum near maximum. 
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before give rise to about a 6% larger total rate, when 
the spectrum is normalized it is indistinguishable to the 
one obtained from only the first-order terms. The 
difference between these two calculations comes mainly 
from our treatment of the final-state corrections, where 
we had to make recourse to neither the zero-range 
approximation nor assume any model for the scattering 
wave function. 

Summarizing, we see that a sufficiently accurate 
determination of the spectrum dN/dEgd^Q ( ^ 3 % in 
the energy variable and ~ 1 % in the rate) would deter
mine the n—n scattering length to ~ 1 F. A determina
tion of the effective range would involve a calculation of 
this process valid for larger Q. 
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APPENDIX 

In this section we shall sketch the evaluation of some 
of the integrals presented in Sec. II, and specifically 
show some of the cancellations mentioned there. 

Putting (12) into (15) we obtain an integral of the 
form 

fa u(q) 
(Al) 

(n2
2—q2)/2mN— (q—n2)

2/2mr—ie 

where u(q) is the Bessel transform of the Hulthen 
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FIG. 6. Single neutron energy spectrum for neutrons emitted 
at 172° to the photon direction. 

FIG. 7. Neutron angle spectrum for neutron 
of an energy of 2.4 MeV. 

function. Neglecting mr/m^ we obtain for (Al) 

(27r)3'2r (n2\ /n2\ 
(Al) = arc tanl — 1 — arc tanl — } 

n2 L \a/ VjS/. 
(A2) 

Equation (16) contributes a term proportional to 

dqdld r i dx2e
l (1+n2+<l) • X 1 e - ^ r 2 V (r i)^ (r2) 

/ : [o>- mr- l2/2mT~\ (l2/2mT) 
(A3) 

where V(ri) is the n—p potential and \p(r2) is the 
3-dimensional Fourier transform of u(q). The contribu
tion of (17) is exactly the same and the two terms cancel. 

The difference of (18) and (19) is proportional to 

dqdldridttf-^ *V &*-*> •ri V (r i)^ (r2) 
( l - 6 ^ r ) . (A4) 

[co—m-v—l2/2mir~] (l2/2mw) 

Carrying out some of the integrations we obtain 

dldrein2'TV(r)\l/(r) 

Za>-ni„-P/2fn„W/2M.) 
(l-eil'<). (A5) 

Noticing that V(r) operates next to ̂ (r) we may use the 
Schrodinger equation and show that this term is 
proportional to 

m* 1 (l32-a2) n2 
- arc tan 

mNn2 n2
2+($2 2a+P+2mir(mT—co) 

which is MTT/MN smaller than (A2). 

(A6) 


